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Stability properties of Potts neural networks with biased 
patterns and low loading 
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Instituut voor Theoretische Fysicq Universiteit Leuven. B-3030 Leuven, Belgium 

Received 16 August 1990, in find form 19 October 1990 

Abstract. The q-state Potts glsss model of neural networlts is extended to include 
biased patterns. For a finite number of such psttema, the existmce and stability 
properties of the Mattis states and symmetric states M discussed in detsil - a 
function of the hiss. Analytic results are presented for all q at zero temperatwe 
Far finite temperatures numerical results are obtained for q = 3 and two classea of 
representative hiss parameters. A comparison is made with the Hopfield model. 

1. Introduct ion 

The q-state Potts model [l] has been introduced in the theory of neural networks in  
(21 to include discrete neurons with more than two states. In that paper the capacity 
of storage and retrieval of information has been discussed, mostly concentrating on 
the limit of zero temperature. 

A related model is the q-state clock spin glass [3] that has  been studied as a 
neural network in [4]. In particular the phase diagram and storage capacity have been 
calculated and the information content has been considered for q = 2,3 ,4  and q + 00. 

In the same spirit, discrete-state phasor neural networks [5] are treated and their recall 
behaviour is solved exactly for any q for sparse and asymmetric interactions. 

Another class of q-state generalizations of the Hopfield networks are the 3-state 
nets discussed in [6-81. Recently (91 2-state representations of such Sstate  nets have 
been derived discussing to what extent the dynamical behaviour of the latter can be 
realized using 2-state neurons. 2-state representations of Potts glass models have been 
investigated in [lo]. 

The q-state Potts and clock spin glass models for neural networks mentioned above 
concern independent random patterns taking any value in the set { 1,. . . , q }  with equal 
probability. In this work we extend these models to allow for the storage and retrieval 
of so-called biased patterns [ll] with a probability (1 + L?,)/q, 01 = 1,. . . ,q,  with B, 
the bias parameter. In particular we are interested here in the stability properties of 
these networks a t  zero and finite temperatures as a function of the bias for a finite 
number of patterns. In a forthcoming publication we will discuss these type of networks 
near saturation, i.e. when the number of learned patterns increase with the size of the 
network [12]. 

t Ondenoeksdkecteur NFWO, Belgium; e-mail: FGBDA180 BLEKULII.BITNET 
$ Ondenoeker IIKW, Belgium. 
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The rest of this paper is organized as follows. In section 2 we describe the model 
in detail. In section 3 we write down the free energy and the saddle-point equations 
for the overlap parameter, using the mean-field theory approach. Also the stability 
matrix and its eigenvalues are given. We then discuss in detail in section 4 the stability 
of the Mattis states and the symmetric states at zero temperature for general bias and 
arbitrary number of Potts states. In particular we give a set of rules for the bias 
parameters under which stability is guaranteed. Furthermore in section 5 we discuss 
the stability properties of the Mattis states and lowest symmetric states at finite 
temperature for q = 3 and two representative classes of bias parameters. We compare 
our results with the Hopfield model with biased patterns [ll]. One of the findings is 
that for the q = 3 systems the stability region for the symmetric mixture states as 
a function of the temperature and bias is smaller, in comparison with the stability 
region for the Mattis state, than for the Hopfield model. In that sense we can say that  
these q = 3 systems perform better. Further, for a given bias some of the stability 
regions are disconnected as a function of the temperature. 

A summary of the main results is given in section 6. Finally in  the appendix we 
work out some details about the behaviour of the eigenvalues of the stability matrix 
in the limit of zero temperature. 

2. The model 

Consider a system of N neurons. We assume that every neuron can occupy q discrete 
states by viewing it as a q-state Potts spin. The instantaneous configuration of all the 
spin variables at a given time describes the state of such a network. The neurons are 
interconnected with all the others by a synaptic matrix of strength J,;’ which deter- 
mines the contributions of a signal fired by the j t h  presynaptic neuron in state p t o  
the post-synaptic potential which acts on the ith neuron in state a. This contribution 
can either be positive (excitatory synapse) or negative (inhibitory synapse). 

The potential he( of neuron i which is in a state bi is the sum of all postsynaptic 
potentials delivered to  it in a time unit, i.e. 

with 

We assume that the synaptic couplings satisfy 

The dynamics of this q-state Potts model is the following. At zero temperature the 
state of the neuron in the next time step is fixed to be the state which minimizes the 
induced local field (2.1). The stable states of the system are those configurations where 
every neuron is in a state which gives a minimum value to {h i ,o , } .  If the relation (2.3) 
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holds, this stability is equivalent to the requirement that  the configurations {ui} are 
the local minima of the anisotropic Hamiltonian 

(2.4) 

In the presence of noise there is a finite probability of having configurations other 
than the local minima. This can be taken into account by introducing an effective 
temperature T = 1/p. 

To build in the capacity of learning and memory in this network, its stable config- 
urations must be correlated with the p patterns {kp}, a = 1, . . . , p  fixed by the learning 
process. The latter are allowed to be biased, i.e. the k? are chosen as independent 
random variables which can take the values 1, ..., q with probability 

l + B u  
P 

P(L2) = - L2 = I ,  ...,q 

where the {B-} are the bias parameters. Analogous to the Hopfield model [ll], we 
therefore propose the learning rule 

l P  
JUp  ' J  = - - Bu) (mb;,p - Bp) 

q2N 0=l  

We note that the bias parameters are independent of the patterns and hence the latter 
are learned in the same way. From the fact that  0 5 P(a)  5 1 and E:=, P ( a )  = 1 
we deduce the properties 

'I 

- 1 5 B - 5 q - l  c B u = O .  

We further remark that the biased Hehh rule (2.6) satisfies the following properties. 
Setting all E, = 0, a = 1, ...,q, leads to  the q-state Potts model discussed in [2]. As 
in the Hopfield model [ l l ]  we find that 

N 9  

I=> p=l 
A J T  = 0 A J T  = JPjp(p + 1) - JPjp(p) (2.8) 

j #  s 

i.e. the total modification of synapses on a given neuron is unchanged during learning, 
Using the learning rule (2.6), both the postsynaptic potential and the Hamiltonian 

can be rewritten m 

(2.10) 
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where we have employed ( p , y  = 1, ..., q )  

(2.11) 

In the following we study the biased Potts neural network for finite p and q and in 
the limit N -+ 03. An important role is played by the order parameter R, defined by 

(2.12) 

It  can be interpreted as a measure for the macroscopic overlap with pattern a. When 
we have total overlap, R, becomes in the limit N - m 

1 '  

q -=I 

R, = q - 1 - - X B : .  

For random configurations with probability distribution (2.5), we have 

(2.13) 

(2.14) 

3. Mean-field theory for low loading 

Starting from the Hamiltonian (2.10) and applying standard techniques (linearization 
and the saddle-point method Ill, 13]), the ensemble-averaged free energy is given by 

The double brackets ((.)) stand for averaging over the distribution of all learned pat- 
terns { k " } .  The saddle-point equations for the order parameters R, are given by 

The following type of solutions of (3.2) will be distinguished. First, there are the 
Mattis states, having only one non-zero overlap which we denote by M. If M > 0, 
they are correiated with one of the p iearned patterns. Since aii patierns are treated 
in the same way the index of the pattern can be chosen arbitrarily so that we have p 
solutions of this type. 

Second, we have the n-symmetric states, being solutions with n (1 _< n _< p) non- 
zero overlaps with equal magnitude s,,. When s,, > 0, they can be seen as states 
which mix the n corresponding patterns. We remark that 3, is the Mattis state M. 
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Third, there are the asymmetric states, having n (1 < n 5 p) non-zero overlaps 
with different magnitude. 

We are interested in the existence and stability properties of these solutions. As 
indicated above, from a neural network point of view the positive Mattis states are 
especially important. But of course we also want to  know if, and in what temperature 
regime, the other type of states, which are spurious states, can be stable. Since, as we 
will see in the following sections, the study of these Potts networks is very involved, 

states. 

at  the stability matrix 

... nCi ̂ h,", ._.ID .-&A Aw.L.cted on:se!ves in this papei to a iresiiiient of the spiirions symmetric 

In order to discuss the local stability of the symmetric and Mattis states, we look 

azf 
BR,BR, A,, E - 

This matrix is of the form 

(3.3) 

(3.4) 

where A, is an n x n matrix with diagonal elements y1 and off-diagonal elements 6 
is a (p - n) x (p - n) diagonal matrix with elements yz. The quantities y, ,  

yz and an ?--. 6 are given by 

where 

The matrix A has three different eigenvalues: 

A, =7,  - 6  

A, = 72 
A, = y1 + (n - 1)s 

(3.9) 
(3.10) 
(3.11) 
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with respective degeneracy 1, n - 1 and p - n. The signs of A,, A, and A, determine 
the stability of the solutions of (3.2). 

For a Mattis state the saddle-point equation (3.2) can be written more explicitly 
as 

Furthermore, the explicit form of the matrix elements of the stability matrix (3.3) is 
given by 

where now 

(3.13) 

(3.14) 

It is clear that A is diagonal. In this case there are only two different eigenvalues: a 
non-degenerate one, namely 

(3.15) 

and a (p - 1)-times degenerate one, i.e. 

(3.16) 

Again, the signs of A, and A, determine the stability of the solutions of (3.12). 

of the solutions of the saddlepoint equations (3.2) and (3.12) at  zero temperature. 
In the next section we study in detail the free energy and the existence and stability 

4. Results at zero temperature 

We start by discussing the solutions of the fixed point equations (3.2) and (3.12) 
at T = 0. In the course of this discussion it will be convenient to rewrite the bias 
B = (B,, ..., B,) in a different form, namely 

B = a(bl,  ..., b s )  6, 2 b, 2 ... 2 b,, (1 E (0,1]. (4.1) 

We call a the bias amplitude and (b l ,  ..., b q )  the bias structure. Due to the fact that  
the model described in section 2 is invariant under permutations of the states of a 
neuron i ,  (4.1) is not an additional assumption. 
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4.1. The Maltis slates 

Taking the limit p -+ CO of (3.12), it is straightforward to see that the following 
solutions exist: 

1 + a b  
q 

M; = -1 ( q  +ab ,  - ab,). (4.3) 

We remark that M; only depends on b, and b, because of the ordering (4.1) and 
the properties (2.7). The subscript 0 indicates that the solution is taken at  T = 0 
and the superscript * expresses the fact that the solution is positive (respectively 
negative). We remark here that comparing (4.2) with (2.14) we see t ha t~we  have 
complete retrieval since, as we will show now, M$ is stable near T = 0. 

To check the stability for the Mattis states we have to calculate the eigenvalues 
(3.15) and (3.16) in the limit T -+ 0. This is straightforward but tedious, especially 
for the negative solution. For more details we refer to the appendix. 

In particular for M$ both eigenvalues A, and A, tend to one such that the positive 
Mattis states are always stable at T = 0 independent of the structure of the bias. For 
M ; ,  A, tends to one hut the behaviour of A, depends on the structure of the bias 
parameters. More explicitly, the M; are stable in the following cases: 
0 p = l  

p > 1,  q = 2 and ab, # 1 
p > 1, p > 2 and b ,  # 6, # b, 
p > 1, q > 2 and ab, # p - 1. 

Otherwise they are unstable. We note that for the Potts model ( q  2 3) without bias 
the M$ are stable and the M;, except for p = 1, are unstable. The results mentioned 
above incorporate the known results about stability for q = 2 with and without bias 
[11,13]. Further in this section we will work out two classes of representative bias 
parameters explicitly for q = 3. 

4.2. The symmetric slates 

From (3.2) we find in the limit p' + 00 

1 
S i  = - n (( m: ($ mk-,, - nab, 

(4.4) 

(4.5) 

The study of their stability properties again requires a detailed investigation of the 
eigenvalues A, to  A, (3.9)-(3.11) in the limit p + 00. Based on the general argumen- 
tation given in the appendix, the following results are obtained. 

We first discuss the positive solutions. The even symmetric states S;, are unstable 
if there are at  least two equal bias parameters. Otherwise, for a given bias structure, 
they are stable except for a finite number of values of the bias amplitude a.  In the 
following, stability is always meant in this sense. The odd symmetric states S;,, are 



1072 D B O K  el  a/ 

unstable for q > 3 and at least two equal bias parameters for the values of the bias 
amplitude satisfying 

( I  - 1)q 2 (21 4- l)Q(bk - b3)6k,1 (4.6) 

k = m a x { j ~ { l  , . . . , q - l ) l b , = b j + l ) .  (4.7) 

k 2 (2/+ I)a(b, - bP) 

where 

Otherwise they are stable except for a finite number of values of a. For q = 2 we 
find the known results [11,13]: the even symmetric states are unstable without bias 
and stable with bias; the odd symmetric states are stable for all values of the bias 
parameters. 

Second, for completeness, we look at the negative solutions. If all bias parameters 
are different, they are stable. If there are at least two equal bias parameters we define 
1' as 

k'=min{jE {1 , . . . ,q-  l ] l b j  = b j + l ] .  (4.8) 

Two possibilities have to be considered. First, if k' = 1 the negative symmetric states 
are unstable for a given bias structure in the following cases: 

q = 2 and n even 
Va E (0,1] : na(bl - b,+,) 2 q if 1 < n = p < q 
Va E (0,1] if q > 2 and n < p  
Va E (0,1] if n = p z  q > 2. 

Otherwise they are stable. Second, if k' 2 2 they are unstable in the cases 
v a  E (0,1]: 

min [d,q - nab,] 

if 1 < n < p and n 2 k' - 1 with 

(4.9) 

v a  E (O,l]: 

q - nabk, 5 max min [djq - nab,] 

if 2k' 5 n = p with 

I k'-1 

d E  (N\{O,l])k'-l I di 2 d, if 15 i <  j 5 k'- 1 ; d j  = n - 2  
j=1 

(4.10) 

Otherwise they are stable. For the Potts model ( q  2 3) without bias all symmetric 
states are unstable except the negative ones with n = p < q.  This has  also been found 
in a study of the dynamics of these models [14,15]. 
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4.3. Specific q = 3 models 

We now illustrate these results for q = 3 and two representative classes of bias param- 
eters. We therefore choose 

B ,  =a(Z,-1,-1) (4.11) 
B ,  = a(1,0,-1) (4.12) 

with a E (0, 11. ‘The form (4.11) indicates that one state is privileged and the other 
two states have equal probability to appear. In the other case, (4.12), all three states 
have different probability. We recall that the biased Hopfield model has B = a(1, - l ) ,  
a E (0,1]. 

The general stability results applied t o  these cases give the following. For E, ,  we 
find that the positive Mattis states are stable. The negative ones are stable for p = 1 
and aiso stable for p > i if the bias ampiitude is maximai, i.e. if a = i. Rrthermore, 
the positive symmetric states are unstable. The negative symmetric ones are unstable 
if 1 < n < p and if 1 < n = p they are unstable for p 2 4 in the region for the bias 
amplitude given by 0 5 a < 1 - 3 / p .  Otherwise they are stable (up to a finite number 
of values for a). 

For E ,  the positive and negative Mattis states are always stable. The positive 
and negative syiiimeiric states are aiso siabie. Again stabiiity is up io some vaiue of 
a, e.g. for n = 3, a has to be different from i and 1 for S$ and S;. 

A conclusion of this stability analysis can he that biased q = 3 models, where 
two states have equal probability to appear, resemble the models without bias. They 
have less stable spurious symmetric states than models where all states have different 
probability. 

4,4. The free energy 
Taking the limit 0 -+ 00 of (3.1) we find, with obvious notation 

n = 1, . . . , p .  (4.13) 

Without bias it has been shown for q = 2 [13] that the following order of energy levels 
of the positive symmetric states occurs at  T = 0 

(4.14) 
This relation is no longer true for q 2 3. For example, we find that f,‘ > f: for q > 5. 
For large p we even have that S$ - q/n such that 

ft 5 f: 5 f,’ 5 . .  . . (4.15) 
In the case with bias we have for q = 2 that  the Mattis states are no longer the ground 
states a t  T = 0 when the bias parameters exceeds the value a = A- 1.  For q 2 3 
these type of results are strongly dependent upon the specific bias parameters. For 
example, for (4.11) and (4.12) we arrive a t  the following results for the positive Mattis 
and the lowest positive symmetric energy levels. For B ,  

f, f (T = 0) = -in (S,) * z  

ft < f,+ < ... < f,‘ < f;. 

f: = -2 (1 -a’)‘ 

f,+ = -;(I - a)’ (3 + 5a + 4aZ)’ 

(4.16) 

(4.17) 
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and for B, 

2 f: = -g (3 - 2) (4.19) 

(4.20) f,' = -& (9+ 4a- 3aZ - 2a3) 

f,' = 2 (4.21) 

2 

. -& (12 + 3a - 6a2 - 3a3 + 2a4I2 if a s i  
if a > $ .  I. - (21 + 9a - 3a2 - Sa3 - 2a4) 

1 The different forms for f$ arise because at the points a = $, a = 5 the exponentids 
that contribute in the limit P -+ 00 change. The energy levels are shown in figures 1 
and 2. We see again that  for bias B, the Mattis state and the first symmetric state 
cross when the bias parameter exceeds the value a. = i d l 8 f i  - 5 + 3& - 5. Fur- 
thermore, since as we have seen above, the symmetric states are unstable and the 
Mattis state is stable, there must be another solution of the fixed point (3.2) which 
is the global minimum of the free energy for a > a,,. This might be an asymmetric 
state. For bias B2 the Mattis state remains the lowest in energy for all values of the 
bias amplitude. 

f -1.0 

-2.0 
M a2 a& 0.6 0.8 

n 0 

Figure 1. The energies of the fist three pos- 
itive symmetric States at T = 0 for the 9 = 3 
Potta network with bias Bj = o(2, -1, -1) as a 
function of the bias parameter a. 

Figure 2. The enerees oi the first three positive 
symmetric s t a b  at T = 0 for the 9 = 3 Potts 
network with bias Bz = 0(1,0, -1) as a fundion 
of the hias parameter (I. 

Fin&, ionce:ning the free ene:gy !ere!- f ~ :  ?he negative Mattis s!.Ztes we find in 
general, combining (4.3) and (4.13) 

ry-: . . -  I L I -  - - >  IL. L:. .  _r .L.. I.:"" - " - ~ - ~  ~-~ I I  71 Cnr " - ..,P 5111,.,p usrog cnrs anu m e  p r u p e ~ e s  w u c  vi- p ~ l ~ ~ x A ~ ~ ~  
some manipulations, at 

- 3 ..- 

fl- > r:. 
Therefore a negative Mattis state can not be a global minimum of the free energy. 
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5. Resul ts  at finite temperature 

The stability study at finite temperature is much more involved. In the following 
we mainly restrict ourselves to positive states since they correspond to retrieval and 
mixture states. First we define the following temperatures which are of interest: 

To = inf {Tl(T,R = 0) is a stable solution of (3.2)] 
T. = sup {T13Sn > 0 : (T, S,,) is a stable solution of (3.2)} 

(5.1) 
(5.2) 

where R = (R,, ..., Rp) and S, is a pdimensional vector with the first n compo- 
nents equal to s,, and the other components equal to zero. We note that the critical 
temperature, i.e. the temperature below which the Mattis states become an absolute 
minima of the free energy. is important from a thermodynamic point of view but has 
no particular significance for neural networks. There the temperature TI below which 
the metastable retrieval states appear is significant. 

We concentrate on the q < 4 models with and without bias. We study the stability 
properties in the whole temperature region from T = 0 up to max{T,,T,}. The 
temperature To can be found from 

To=inf{T171(T,R=O) > O  7 , ( T , R = 0 ) > 0 }  (5.3) 

using the expressions (3.5) and (3.6). The result is 

(5.4) 

Above this temperature, the state R = 0 becomes stable. 

5.1. The Mattis slates 

The calculation of T, for the Mattis states is more difficult. For p = 2 some analytic 
results in this connection are obtained in ill].  In that case To = 1 - a' and, using 
series expansions of (3.15) and (3.16) around To, one shows that the Mattis states 
exist and become unstable near To if a > l/&. 

We have supplemented these q = 2 stability results by determining precisely the 
stability region of the Mattis states as a function of T and a, over the whole interval 
of these parameters. The result is shown in figure 3. One sees that for 0 < a < l/&, 
'T, = 'T~ whiie for i/& < a < i, '7, < 'T,. hrthermore there is a smiii intervai for 
the bias amplitude (0.54,1/&) where, as one lowers the temperature starting from 
T,, one encounters an instability region. Since we know that the Mattis states are 
stable at T = 0, we conclude that for this bias interval the temperature regions where 
we have stable Mattis states are disconnected. 

A similar study has been done numerically for the q = 3 Mattis states and both 
ciasses of bias parameters (4 . i i j  and (4,iZ). Tie resniis are shown iii figures.4.and 
5. For a = 0, we find the value of T, in the unbiased case [15]: T,(a = 0) = 2.18. 
When a increases, T, decreases. For Q = 1 we find a T, that is zero for the class B,  
and non-zero for the class €2,. The reason is the following: the bias E ,  = (2, -1, -1) 
corresponds with a probability distribution for the patterns where the lowest state 
has probability one. This means that there is no freedom left for the neurons. The 
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* 
Figure 3. The temperatwa To and TI ss a function of the bias for the Hopfield 
model. The chain curve indicates the bonier of the stability 4". 

2.51 , I 

Figure 4. The temperatwes TO and TI ss a 
function of the biaa for the = 3, B = 8 1  Potts 
network. The chain "ye  indicates the bonier of 
the stability region 

Figure 5. The temperature TO, TI, Tz and Tz 
as e function of the biss for the q = 3, B = B2 
Potts network 

bias B? = (l,O, -1) corresponds with a distribution where two states have a non-zero 
probability. Hence the heurons can still occupy different states. 

Numerical evalnatian of A, (3.15) and A, (3.16) give the precise stability results 
shown in the same figures. First, they confirm the preliminary results presented in 
[14], i.e. the Mattis states are no solution of the fixed-point equation (3.12) above Tl 
for a bias of the form (4.11) and (4.12) independent of the value of a in contrast to the 
Hopfield model. Furthermore there is again an instability region for B, in the interval 
a t ~U.O,IJ JUS& as for the Iiopiieid case. For 2, such a region doe4 not appear. 

Second, contrary to the Hopfield model, where always Tl 5 To there is a region 
(To,Tl) depending on Q where both a Mattis state and the zero-solution are stable. 
For a -t 1, this region contracts to zero. In fact the situation in this region can be 
described more precisely as follows. Below To only one (positive) Mattis solution exists 
and it is stable. At To the zero solution becomes stable and the stable Mattis state 

Mattis state, a second unstable Mattis state. The latter has overlap zero at To and 
it increases with inerewing temperature. In contrast, the overlap of the stable Mattis 
state decreases. At TI both Mattis states coalesce and disappear. The appearance of 
such a region is consistent with the study of the time evolution of the overlap presented 
in [15]. There it has been calculated that for a = 0, the overlap jumps from 0.75 to 0 

- ,-" ., . 

has a finite over~ap, in interva; (T T \ ,L..- ___:_I_ L -:2-.. .L̂  -&"L,A " ~ - ~  
o ,  I, ~ i i t . ~ c  axis~ i~ ,  uearum wrj a m w r  mxv and 
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at TI = 2.18. All this is reminiscent of a first-order phase transition a t  TI for the 
q = 3 models. Therefore, deriving analytic results based on the series expansions for 
small overlap, as has been done in the Hopfield case, does not make any sense in the 
neighbourhood of the interesting temperature TI. 

5.2. The symmetric states 

Analytic results based on series expansions for small overlap S, give information about 
what happens near To in the following way. Starting from the expanded fixed-point 
equation (3.2) for the symmetric states 

we see that, on the one hand, for the Hopfield model the pz term is zero. Furthermore, 
the P3 term for the positive symmetric states in that case (9 = 2), i.e. 

is always negative. So, this immediately suggests that for (1 - a2)P < 1,  i.e. T > To, 
the only possible solution is R = 0. On the other hand, for the 9 2 3 Potts models 
the second term in (5.5) can be positive (take e.g. a = 0). Hence, a positive overlap 
solution is possible for p(q-l-(a2/9) E:=, b;) < 1,  i.e. again T > To, and anegative 
overlap solution is possible for T < To. 

Using these expansions for the S: in (3.9)-(3.11), we find for the eigenvalues A, 
to A3 

1 
T A1 % A, % - + O(t2 )  

t 
A 3 % - - T + O ( t 2 )  t = T , - T S O .  

This teaches us that out of the symmetric states with small overlap, only the S; 
(A3 is not relevant in this case) is stable near To for T < To independent of the bias 
structure. In particular the S i  are unstable for T > To. We remark that there might 
exist S i  with finite overlap at  To analogous to the Mattis state discussed above. They 
cannot be treated with the expansion (5.5). 

Further results for the positive symmetric states have been obtained numerically 
and are summarized in figures 6-9. We concentrate on the lowest states n = 2 and 
n = 3 since they show the interesting features. 

First of all these results are in agreement with what we have said before about 
their T = 0 behaviour and about bias zero. But even for q = 2 some new aspects, 
which we could not find in the literature, arise. While for p = n and a > l/& the 
upper limit of the stability region follows the curve To = 1 - a2,  it turns out that for 
p > n this upper limit goes down due to the effect of A,. Furthermore in a region 
around a = i, the symmetric state Si becomes unstable for small temperatures. 

Comparing figures 3,6  and 7 we see that, as a increases above l/&, the spurious 
states get more weight for q = 2. This feature is also present hut not so outspoken for 
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function of the biss for the Hopfield model. 
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n 

Figure 8. The temperatuna TO and Tz as a 
function of the hiss for the q = 3, B = 8 1  Potts 
network. The chain curve indicates the border of 
the stability region for n 5 p. The dotted curve 
encircles the region where the symmetric state is 
only stable for n = p. 

Figure 9. The temperatures To and T3 as a 
function of the bias for the q = 3, B = B1 Potts 
network. The chain m v e  indicates the border of 
the stability region. 

the q = 3 model with bias B ,  (compare figures 4 ,8  and 9). However for bias El, it is 
no? I? E!! there (see fignre 5) .  hrthermore we note that for Ba there is no influence 
from A, on the S t  and 5': states. 

For the q = 3, B = B,  system one first encounters the Mattis state as one lowers 
the temperature T and this for the whole bias region. For the q = 3, B = B,  system 
the only stable states for low bias up to  a = 0.35 are the Mattis states. Again we 
remark that  in this case the stability region for the St(n < p) state is disconnected 
for high bias. 

For both systems the stability region for higher symmetric states seem to get 
smaller as a function of (I and n. So they perform better for low bias than the biased 
Hopfield model. This is even true for higher bias for the q = 3, B = B, system. Here 
one really finds a considerable temperature region depending on a where only the pure 
patterns are stable. 

see if the &eve f&urs s ~ r v i v e  in ?he ! i ~ . i t  ~f sa!fira?ion, !t be ;cte:-sti-g 
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6. Concluding r emarks  

The main results of this paper are the following. We have studied Potts-glass models 
of neural networks with afinite number of biased patterns. In particluar the existence 
and stability properties of the Mattis states and symmetric states were discussed. 
The positive Mattis states are interesting since they are correlated with the learned 
patterns. The symmetric states correspond to mixtures of learned patterns and there- 
fore they are spurious states of the network. Hence studying their (in)stability is 
important. 

At zero temperature we have obtained the precise conditions for stability for an 
arbitrary number of Potts states q. In particular the positive Mattis states are always 
stable. Furthermore, they give complete retrieval. The negative Mattis states are 
stable for certain structures of the bias parameter. Also the stability results for the 
symmetric states depend very much on the biasstructure. So for these cases werefer to 
the detailed explanation given in section 4. We have illustrated one of the main findings 
by applying these results to two typical q = 3 models. In the case that  two states 
have equal probability to appear (the B,  system), we see that there are less stable 
spurious symmetric states than for models where all states have different probability 
(the E ,  system). For the B ,  system the free-energy levels cross for a certain value 
of a indicating that there are symmetric states which have a lower energy than the 
positive Mattis states. The latter have lower energy than the negative Mattis states. 

For finite temperatures we have restricted ourselves mainly to 9 5 3 positive 
Mattis and the n = 2 , 3  positive symmetric states. We have studied their stability 
properties in the whole temperature region as a function of the bias. First, for the 
q = 3 models there is a region (To,T,) (see (5.1), (5.2)) where both a Mattis state and 
the zero solution are stable. From previous results [15] we know that at T, the overlap 
is discontinuous, e.g. for bias zero it jumps at T, = 2.18 from 0.75 to 0. This is in 
contrast to the Hopfield model where T, 5 To and where the overlap is a continuous 
function of the temperature. Second, for certain values of the bias parameters, the 
temperature regions where tbe states of the network are stable can be disconnected. 
This has been seen for the q = 2 and 9 = 3 positive Mattis and positive symmetric 
states. Third, for positive n-symmetric states ( q  = 2,3) the stability region for n = p 
is smaller than or equal to the stability region for n < p depending on the bias. Finally, 
as a increases the spurious symmetric states get more weight for q = 2, a feature that 
is less outspoken for the q = 3, B, system. For the 9 = 3, B ,  system there seem 
to be considerable temperature regions depending on a where only the pure patterns 
are stable. So in that sense one could conclude that the biased q = 3 models perform 
better than the biased Hopfield model. 
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Appendix.  Behaviour of the eigenvalues A, to A, for 

In the analysis of the stability of the states S? we consider two possibilities. Firstly, 
the eigenvalue ,I3 (equations (3.6) and (3.11)) exists (n < p). To calculate the limit 

+ 00 
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p + 03 of A, we proceed as follows. We show that in this limit the average over the 
distribution of learned patterns {k"), a = 1, . . . ,p of the expression 

is positive or zero. Therefore we have to look carefully at the arguments of the different 
exponential functions occurring in the numerator and denominator of ( A l )  via U,(n) 
(3.8). Their value is determined in function of the Potts operator ( 2 . 3 ,  the bias 
parameters B and the distribution of the first n patterns. 

In more detail, for a given configuration k = {k', ..., E"}, the greatest arguments 
in the exponentials of U,(n) are obtained for a well defined set of p out of {l, ...,q}. 
Denoting this set by A, and its cardinality by N ( k )  we get for the limit p --t cc of 
(AI) 

If N ( k )  > 1 for some configuration k,  we rewrite (A2) as 

For a configuration {k,k"+'} with N ( k )  > 1 and such that 1 # k"+' E A, we find 
that (A3) is strictly positive. Hence A, -+ -cc as p - m and therefore we have 
instability. 

When for all configurations k the cardinality N ( k )  = 1 and hence (A2) equals 
zero, we have that the limit p + cc of the product of p and expression ( A l )  is zero 
since in this case ( A l )  decreases exponentially in p. This implies A, = 1. Since the 
averages in (3.5) and (3.7) behave in the same way, we obtain that 7, = 1 and 6 = 0 
in the limit p - W. Hence, using (3.9) and (3.10) we see that A, = A, = 1. So, we 
have stability. 

Secondly, the eigenvalue A, does not exist (n = p) .  Looking at the expressions of 
A, and A, (equations (3.9) and (3.10)) we see that we have to analyze 7, (3.5) and 6 
(3.7). The calculation of y1 is similar to the one of A, presented above. This leads to  
the following results.Firstly, if for all configurations k,  N ( k )  = 1 we have seen that 
7, = 1 and 6 = 0. This means that  A, = A, = 1 and hence we have stability. Secondly, 
when there exists a configuration k with N ( k )  > 1, we have two possibilities. If this 
configuration is such that (mk,,, - ab,) is not the same for all p E A,, we have that 
y1 < 0 and this immediately implies that A, < 0 or A, < 0. So we have instability. 
However, when (mkI,# - Bo) is the same ior aii p E A, ior aii configuraiions k with 
N ( k )  > 1, y1 = 1 and 6 = 0. Therefore we have stability. 

We discuss two typical examples, e.g. 5'2 and S;,, when there are two equal bias 
parameters. We use the form (4.1) for the bias parameters and we define k as in (4.7). 
First let us consider n = 21 and take the specific configuration k = ( k ,  ..., k, k + l ,  ..., k+ 
1) where the first I components are equal to k and the last / components are equal to 
k + 1. Then looking at the maximum over p of (E!=, mk.,, - nB,) leads to A, = 
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{ k ,  E +  1) .  According to the preceding analysis S$ is unstable. Second, let us consider 
n = 21 + 1, q 2 3 and take the specific configuration k = ( k ,  ..., k ,  k + 1,  ..., k + 1,  s )  
with the first I components equal to k ,  the following I components equal to k + 1 and 
the last component s # k ,  k + 1. Then the maximum over p of mk.,# - nBp) 
occurring in (Al)  via Up(.) is equal to 

max{lq - (21 + 1 )  - (21 + l)ab,, -21 + q - 1 - (21 + l)ab,, - (21+ 1) - ( 2 l +  l)ab,) 

(A41 

where the different terms are coming from p = k ,  k + 1, p = s and other p. If both 

(I - 1)q 2 (21 + I)@J, - b , )  
Vp # k , k +  1 , s  : 1q 2 ( 2 l +  l)a(6, - bp) 

then { k , k  + 1) C A,  so N ( k )  2 2 and hence we have instability. The condition 
(A5) can be rewritten in the following way. If k = 1 we take s = 3 such that (A5) 
immediately gives the form (4.6). If k # 1 we take s = 1 such that the first condition 
in (A5) is trivially satisfied and the second one can be written as in (4.6). So under 
these conditions S;+l is unstable. Conversely, when (4.6) is not satisfied one can 
argue that N ( k )  = 1 for all configurations k (except for a finite number of values of 
a)  and this implies stability. 
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