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Abstract. The g-siate Potts glass model of neural networks is extended to include
biased patterns. For a finite number of such pattemns, the existence and stability
properties of the Mattis states and symmetric states are discussed in detail as a
function of the bias. Analytic results are presented for all g at zero temperature.
For finite temperatures numerical results are obtained for ¢ = 3 and two classes of
representative bias parameters. A comparison is made with the Hopfield model.

1. Introduction

The g-state Potts model [1] has been introduced in the theory of neural networks in
[2] to include discrete neurons with more than two states. In that paper the capacity
of storage and retrieval of information has been discussed, mostly concentrating on
the limit of zero temperature.

A related model is the g-state clock spin glass [3] that has been studied as a
neural network in [4]. In particular the phase diagram and storage capacity have been
calculated and the information content has been considered for ¢ = 2,3,4 and ¢ — oo.
In the same spirit, discrete-state phasor neural networks [5] are treated and their recall
behaviour is solved exactly for any ¢ for sparse and asymmetric interactions.

Another class of g-state generalizations of the Hopfield networks are the 3-state
nets discussed in [6-8]. Recently [9] 2-state tepresentations of such 3-state nets have
been derived discussing to what extent the dynamical behaviour of the latter can be
realized using 2-state neurons. 2-state representations of Potts glass models have been
investigated in [10].

The g-state Potts and clock spin glass models for neural networks mentioned above
concern independent random patterns taking any value in the set {1,...,¢} with equal
probability. In this work we extend these models to allow for the storage and retrieval
of so-called biased patterns [11] with a probability (1+ B,)/q, a =1,...,9, with B,
the bias parameter. In particular we are interested here in the stability properties of
these networks at zero and finite temperatures as a function of the bias for a finite
number of patterns. In a forthcoming publication we will discuss these type of networks
near saturation, 1.e. when the number of learned patterns increase with the size of the
network [12].
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The rest of this paper is organized as follows. In section 2 we describe the model
in detail. In section 3 we write down the free energy and the saddle-point equations
for the overlap parameter, using the mean-field theory approach. Alsc the stability
matrix and its eigenvalues are given. We then discuss in detail in section 4 the stability
of the Mattis states and the symmetric states at zero temperature for general bias and
arbitrary number of Potts states. In particular we give a set of rules for the bias
parameters under which stability is guaranteed. Furthermore in section 5 we discuss
the stability properties of the Mattis states and lowest symmetric states at finite
temperature for ¢ = 3 and two representative classes of bias parameters. We compare
our results with the Hopfield model with biased patterns [11]. One of the findings is
that for the ¢ = 3 systems the stability region for the symmetric mixture states as
a function of the temperature and bias is smaller, in comparison with the stability
region for the Mattis state, than for the Hopfield model. In that sense we can say that
these ¢ = 3 systems performn better. Further, for a given bias some of the stability
regions are disconnected as a function of the temperature.

A summary of the main results is given in section 6. Finally in the appendix we
work out some details about the behaviour of the eigenvalues of the stability matrix
in the limit of zero temperaturé.

2. The model

Consider a system of N neurons. We assume that every neuron can occupy ¢ discrete
states by viewing it as a ¢g-state Potis spin. The instantaneous configuration of all the
spin variables at a given time describes the state of such a network. The neurons are
interconnected with all the others by a synaptic matrix of strength J;3* which deter-
mines the contributions of a signal fired by the jth presynaptic neuron in state p to
the post-synaptic potential which acts on the ith neuron in state «. This contribution
can either be positive (excitatory synapse) or negative (inhibitory synapse).

The potential £, of neuron ¢ which is in a state o; is the sum of all postsynaptic
potentials delivered to it in a time unit, i.e.

—E 2 JPm,, oM., (2.1)

J;l o, p=1
with

m, ,=¢b, ,—1. (2.2)

a;.p ai,p

We assuimne that the synaptic couplings satisfy
5= (2.3)

The dynamics of this g-state Potts model is the following. At zero temperature the
state of the neuron in the next time step is fixed to be the state which minimizes the
induced local field (2.1). The stable states of the system are those configurations where
every neuron is in a state which gives a minimum value to {#; ; }. If the relation (2.3)
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holds, this stability is equivalent to the requirement that the configurations {a,} are
the local minima of the anisotropic Hamiltonian

Z Z IGfmy, m, . (2.4)

' J-—l a,p=1

In the presence of noise there is a finite probability of having configurations other
than the local minima. This can be taken into account by introducing an effective
temperature 7= 1/8.

To build in the capacity of learning and memory in this network, its stable config-
urations must be correlated with the p patterns {k?}, a = 1,...,p fixed by the learning
process. The latter are allowed to be biased, i.e. the k? are chosen as independent
random variables which can take the values 1, ..., ¢ with probability

Play = 11 Ba

a=1,.,q (2.5)

where the {B,} are the bias parameters. Analogous to the Hopfield model [11], we
therefore propose the learning rule

Je = quN i (ms.0 = Ba) (g0 = B,) - (2.6)

We note that the bias parameters are independent of the patterns and hence the latter
are learned in the same way. From the fact that 0 < P(a) < land }_!_, P(a) =1
we deduce the properties

q
-1<B,<qg-1 > B, =0. (2.7)

a=1

We further remark that the biased Hebb rule (2.6) satisfies the following properties.
Setting all B, = 0, a = 1,...,¢, leads to the ¢-state Potts model discussed in [2]. As
in the Hopfield model [11] we find that

Z Z ATF =0 AT =I5+ 1) - I3 (p) (2.8)
i=t p=1
J#
i.e. the total modification of synapses on a given neuron is unchanged during learning,
Using the learning rule (2.6), both the postsynaptic potential and the Hamiltonian
can be rewritten as

1 N
R o, N Z

M-u

(mk:,o.- = Ba,‘) (mk;,a,- - Ba,-) (2.9)

(mk‘:,a.— - Ba.-) (mk;,a,- - Ba,-) (2.10)

i
-

a

-

ot

[

1
H=—ox

™M=
=

i,3=1 g=1

1
1]

e

X
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where we have employed (p,v =1,...,9)

1 7
- Z My aMyy =M, .. (2.11)
q a=1

In the following we study the biased Potts neural network for finite p and ¢ and in
the limit N — oo, An important role is played by the order parameter R, defined by

N
1
Ro=%> (mosus = Bs,) (2.12)
i=1
It can be interpreted as a measure for the macroscopic overlap with pattern a. When
we have total overlap, R, becomes in the limit N - oo
1
R,=q-1--3% B2 (2.13)

q a=1

For random configurations with probability distribution (2.5), we have

1 g
R =—-= B2, 2.14
. qz 2 (2.14)

3. Mean-field theory for low loading

Starting from the Hamiltonian (2.10) and applying standard techniques (linearization
and the saddle-point method [11,13]), the ensemble-averaged free energy is given by

P 7 P
=155 (o (e p L mn ).
a=1 =1 a=1

The double brackets {{.)} stand for averaging over the distribution of all learned pat-
terns {k*}. The saddle-point equations for the order parameters R, are given by

— Zf::l (mk“.p - Bp) exp [[3 Z§=1(mkb,p — Bp)Rb] >>
Ra - << g=1 exp [ﬂ zg:l(mkb,p _.Bp)Rb] . (32)

The following type of solutions of (3.2) will be distinguished. First, there are the
Mattis states, having only one non-zetc overlap which we denote by M. If M > 0,
they are correiated with one of the p learned patierns. Since all patterns are treated
in the same way the index of the pattern can be chosen arbitrarily so that we have p
solutions of this type.

Second, we have the n-symmetric states, being solutions with n (1 < n < p) non-
zero overlaps with equal magnitude S,. When 5, > 0, they can be seen as states
which mix the n corresponding patterns. We remark that S| is the Mattis state M.
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Third, there are the asymmetric states, having n (1 < n < p) non-zero overlaps
with different magnitude.

We are interested in the existence and stability properties of these solutions. As
indicated above, from a neural network point of view the positive Mattis states are
especially important. But of course we also want to know if, and in what temperature
regime, the other type of states, which are spurious states, can be stable. Since, as we
will see in the following sections, the study of these Potts networks is very involved,
we have restricted ourselves in this paper to a treatment of the spurious symmetric
states.

In order to discuss the local stability of the symmetric and Mattis states, we look

at the stability matrix

a2 f
= —. 3.
40 = 5R0R, 33)
This matrix is of the form
_f{A. 0
i (% 50) »

where A, is an n x n matrix with diagonal elements ¥, and ofl-diagonal elements §
and D, is a (p—n) x (p— nj diagonal matrix with elements v,. The quantities 7, ,
Ta a.nc{J § are given by

n=1-48 << E:’=1 (m""-ﬁ‘ - Bp)2 Up(ﬂ) . ( §=1 (mk‘m - Bﬂ) Uﬂ(n)) 2>> (3.5)

W\ __:::1 Up(.n’.) _lgzl Up(n)
vo=1-p 23:1 (mk""'l.p - ‘Bp)zUp(n) _ Ele (mk"+1,p - B,o) Up(") ’
: U, T U,(n)
(3.6)
b=-8 ' Zf’=1 (mk’-ﬂ - Bp) (mfﬂ,p _ Bp) Upln)
B ;:l Up(n)

B [ZZ:I (mkl.p - Bp) Up(n)] [E?‘=12(mkj’p _ BP) Up(n)]— >> (3-7)
(S v,m)

where
n
Up(n) = ¢xp l:fasn (Z mk'lp - an) . (38)
s=1
The matrix A has three different eigenvalues:
A=rn-6§ (3.9)
A=y +(n—-1)8 (3.10)

A = 7y (3.11)



1070 D Boli¢ et al

with respective degeneracy 1, n — 1 and p — n. The signs of A,, A, and A, determine
“the stability of the solutions of (3.2).

For a Mattis state the saddle-point equation (3.2) can be written more explicitly
as

M= il (1 +qBa) f):l(ma,p — B,o)exP [ﬂM{ma,p - Bp)] . (3.12)

zzl exp [ﬁM(ma,p - B,)]

Furthermore, the explicit form of the matrix elements of the stability matrix (3.3) is
given by

¢ ., — B v, — B
Ay =6, — ﬁ(( Loz (Mis = p)g"k 0~ B,
p=1 "t
_ zzl zizl(mk‘,p - Bp)(mkb,c( - Ba)UpUa >>

(20,

P
U, = exp (ﬁ): (mea , — B,) Rd). (3.14)
d=1

It is clear that A is diagonal. In this case there are only two different eigenvalues: a
non-degenerate one, namely

1 d 1+ Ba g:l(mo,a - Ba)z exp[ﬂM(ma,a - Ba)]
h=1-03 (%7=) [  explBM(m,, — B,)
_ (Eg=1(ma,a - Ba)exp[ﬂM(ma,a — Ba)])z]
gr.—..l exp[r@M(ma,a - Ba )]
and a (p — 1}-times degenerate one, i.e.

_ L 14 Ba 1+ B Egzl(mo, - Bo)2 exP[ﬂM(ma,a — Ba)]
"3‘1“’,;;( ) () [ et 5
_ ( g:l(ma.p - Ba)exp[ﬂM(ma,a - Ba)]) 2]

g:l exp[ﬁM(ma,a - Bo)] )

Again, the signs of A, and ); determine the stability of the solutions of (3.12).
In the next section we study in detail the free energy and the existence and stability
of the solutions of the saddle-point equations (3.2) and (3.12) at zero temperature.

(3.13)

where now

(3.15)

(3.16)

4, Resulis at zero temperature

We start by discussing the solutions of the fixed point equations (3.2) and (3.12)
at 7' = 0. In the course of this discussion it will be convenient to rewrite the bias
B =(B,.., B,) in a different form, namely

B =a(by,....b,) by>b,> .24, a€(0,1} (4.1)
We call a the bias amplitude and (b,, ..., b,) the bias structure. Due to the fact that

the model described in section 2 is invariant under permutations of the states of a
neuron i, (4.1) is not an additional assumption.
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4.1. The Mattis siales

Taking the limit # — oo of (3.12), it is straightforward to see that the following
solutions exist:

a? &
Mg'—_"q-—l-—? 82 (4.2)
a=1

My = -1 +q""1 (¢ +ab, — ab,). @.3)

We remark that My only depends on b, and b, because of the ordering (4.1) and
the properties (2.7). The subscript 0 indicates that the solution is taken at 7' = 0
and the superscript & expresses the fact that the solution is positive (respectively
negative). We remark here that comparing (4.2) with (2.14) we see that we have
complete retrieval since, as we will show now, M is stable near T = 0.

To check the stability for the Mattis states we have to calculate the eigenvalues
(3.15) and (3.16) in the limit T — 0. This is straightforward but tedious, especially
for the negative solution. For more details we refer to the appendix.

In particular for Mg both eigenvalues A, and )4 tend to one such that the positive
Mattis states are always stable at 7 = 0 independent of the structure of the bias. For
Mg, A, tends to one but the behaviour of A; depends on the structure of the bias
parameters. More explicitly, the My are stable in the following cases:

e p=1

e p>lg=2andab #1

o p>lLg>2andb #b,#by

e p>1l,¢>2andab, #£q-1.

Otherwise they are unstable. We note that for the Potts model (g > 3) without bias
the Mg are stable and the M, except for p = 1, are unstable. The results mentioned
above incorporate the known results about stability for ¢ = 2 with and without bias
[11,13]). Further in this section we will work out two classes of representative bias
parameters explicitly for ¢ = 3.

4.2. The symmelric states
From (3.2) we find in the limit 3 — oo

(1.4)

7\ ’ J >
% <<n}in (Z Mg p — nabp) >> . (4.5)

The study of their stability properties again requires a detailed investigation of the
eigenvalues A; to Ay (3.9)—(3.11) in the limit 8 — co. Based on the general argumen-
tation given in the appendix, the following results are obtained.

We first discuss the positive solutions. The even symmetric states Sy are unstable
if there are at least two equal bias parameters. Otherwise, for a given bias structure,
they are stable except for a finite number of values of the bias amplitude a. In the
following, stability is always meant in this sense. The odd symmetric states S} 41 aTe
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unstable for ¢ > 3 and at least two equal bias parameters for the values of the bias
amplitude satisfying

(I-10> @+Dab - 0)8,  lg>@+Dalb,—8)  (46)
where
k=max{j € {1,...¢~1}|b; = b;;,}. (4.7

Otherwise they are stable except for a finite number of values of . For ¢ = 2 we
find the known results [11,13]: the even symmetric states are unstable without bias
and stable with bias; the odd symmetric states are stable for all values of the bias
parameters.

Second, for completeness, we look at the negative solutions. If all bias parameters

are different, they are stable. If there are at least two equal bias parameters we define
£ as

K = min{j € {1,....g~ 1}[8; = b;; }. (4.8)

Two possibilities have to be considered. First, if & = 1 the negative symmetric states
are unstable for a given bias structure in the following cases:

e ¢=2and neven

¢ Yac(0,1]:na(b, —b,,,)>qifl<n=p<yq

o VYVae(0,1]ifg>2andn<p

e Yae(0,1]ifn=p>¢>2

Otherwise they are stable. Second, if k&’ > 2 they are unstable in the cases

e Yae (0,15

—nab, < mi d;q — nab;
it _;2%)5 {j:l,-..l,?:'q[ j4—na -’]}

ifl<n<pandn>k —1with

E-1
Dlz{deN’g"l|d,-2djiflsigj5k’—l;Zdjzn} (4.9)
i=1
o Vae(0,1]:

q - naby, < max {j=1§??f,;,_1 [d;q - nﬂ"’j]}

if 2k < n = p with

i=1

-1
D2={de(N\{0,1})""1 ld; >d;if1<i<ji<k -1, djzn—-Q}.

(4.10)

Otherwise they are stable. For the Potts model (¢ > 3) without bias all symmetric
states are unstable except the negative ones with n = p < ¢. This has also been found
in a study of the dynamics of these models [14, 15].
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4.3. Specific g = 3 models

We now illustrate these results for ¢ = 3 and two representative classes of bias param-
eters. We therefore choose

B, =a(2,-1,-1) (4.11)
"B, = a(1,0,—1) (4.12)

with a € (0,1]. The form (4.11) indicates that one state is privileged and the other
two states have equal probability to appear. In the other case, (4.12), all three states
have different probability. We recall that the biased Hopfield model has B = a(l,~1),
a €(0,1].

The general stability results applied to these cases give the following. For B,, we
find that the positive Mattis states are stable. The negative ones are stable forp=1
and also stable for p > 1 if the bias ampiitude is maximal, i.e. if a = 1. Furthermore,
the positive symmetric states are unstable. The negative symmetric ones are unstable
if 1 <n < pandifl < n=pthey are unstable for p > 4 in the region for the bias
amplitude given by & < a < 1—3/p. Otherwise they are stable (up to a finite number
of values for a).

For B, the positive and negative Mattis states are always stable. The positive
nd negative symmetric states are also stable. Again stability is up to some values of
a, e.g. for n = 3, a has to be different from 1 and 1 for S§ and S5 .

A concluston of this stability analysis can be that biased ¢ = 3 models, where
two states have equal probability to appear, resemble the models without bias. They
have less stable spurious symmetric states than models where all states have different
probability.

1]

4.4. The free energy
Taking the limit # — oo of (3.1) we find, with obvious notation

FET =0)= -in(5%)° n=1.,p. (4.13)

Without bias it has been shown for ¢ = 2 [13] that the following order of energy levels
of the positive symmetric states occurs at T'= 0

H<t<.o<fl<fl (4.14)

This relation is no longer true for ¢ > 3. For example, we find that f§ > f for ¢ > 5.
For large ¢ we even have that S} ~ g/n such that

A< <Hf<.. (4.15)

In the case with bias we have for ¢ = 2 that the Mattis states are no longer the ground
states at T' = 0 when the bias parameters exceeds the value @ = 2 — 1. For ¢ > 3
these type of results are strongly dependent upon the specific bias parameters. For
example, for (4.11) and (4.12) we arrive at the following results for the positive Mattis
and the lowest positive symmetric energy levels. For B,

f=-2(1-a%? (4.16)
ff=-1-0a?(3+5a+ 44::"’)2 (4.17)
—2(1 —a)* (4 +9a + 8a?)” if <!
= #(1—a)*( @ + 8a%) , haz3 (4.18)
~Z(1 - a)? (3+4a+ 7a? + 4a%) if a>1
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and for B,
ft=-3(3-da?’ (4.19)
F = —& (9+ 4a— 3a% — 24%)° (4.20)
[ =% (124 3a — 602 - 3a° + 2a%)° if a<i
=9 7T ¢ T (4
— 35z (21 + 9a — 3a® — 9a® — 2a%) if a> 3.

The different forms for fJ arise because at the points a = %, a= % the exponentials
that contribute in the limit # — oo change. The energy levels are shown in figures 1
and 2. We see again that for bias B, the Mattis state and the first symmetric state

cross when the bias parameter exceeds the value a; = l%\/ 184/2 =5 + 32— 5. Fur-
thermore, since as we have seen above, the symmetric states are unstable and the
Mattis state is stable, there must be another solution of the fixed point (3.2) which
is the global minimum of the free energy for @ > a;. This might be an asymmettric
state. For bias B, the Mattis state remains the lowest in energy for all values of the
bias amplitude.

0.0 T T T T
_0.5 - -
f o102 - f
fa
-5 b
f,
2.0 Lt 1 1 | 1
0.0 0.2 0.4 0.6 0.8 10
a
Figure 1. The energies of the first three pos- Figure 2. The energies of the first three positive

itive symmetric states at T = 0 for the ¢ = 3 symmetric states at T = O for the 4 = 3 Potts
Potts network with bias B1 = 2{2,—1,-1) as a  network with bias Bz = {1,0,—1) as a function
function of the bias parameter a. of the bias parameter a.

~ 11 ARnl

T r o
rifiany, Condéerni

ne t
general, combining (4.3) and (4.13)

1
- _ 2
T = =g (L abla + (b )2 (122)
Using this and the propesties of the bias parameters (2.7) for ¢ = 3 we arrive, after

some manipulations, at
> A

Therefore a negative Mattis state can not be a global minimum of the free energy.
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5. Results at finite temperature

The stability study at finite temperature is much more involved. In the following
we mainly restrict ourselves to positive states since they correspond to retrieval and
mixture states. First we define the following temperatures which are of interest:

T, = inf {T{(T, R = 0) is a stable solution of (3.2)} (5.1)
T, =sup {T}3S, > 0:(T,S,) is a stable solution of (3.2)} (5.2)

where R = (Ry, .., R,) and S, is a p-dimensional vector with the first n compo-
nents equal to S, and the other components equal to zero. We note that the critical
temperature, i.e. the temperature below which the Mattis states become an absolute
minima of the free energy, is important from a thermodynamic point of view but has
no particular significance for neural networks. There the temperature 7} below which
the metastable retrieval states appear is significant.

We concentrate on the ¢ < 4 models with and without bias. We study the stability
properties in the whole temperature region from T = 0 up to max{T},7,}. The
temperature T;, can be found from

T, = inf{T|y,(T,R=0)>0  y,(T,R=0)> 0} (5.3)

using the expressions (3.5) and (3.6). The result is
a? o,
Tozq-—l—-;——z:bp. (5.4)
: p=t

Above this temperature, the state B = 0 becomes stable.

5.1. The Matlis stales

The calculation of T} for the Mattis states is more difficult. For ¢ = 2 some analytic
results in this connection are obtained in [11]. In that case 7y = 1 — a® and, using
series expansions of (3.15) and (3.16) around Tj,, one shows that the Mattis states
exist and become unstable near T, if a > 1//3.

We have supplemented these ¢ = 2 stability results by determining precisely the
stability region of the Mattis states as a function of T and a, over the whole interval
of these parameters. The result is shown in figure 3. One sees that for 0 < a < 1/v/3,
T, = T, while for 1/v3 < a < 1, T} < T,. Furthermore there is a small interval for
the bias amplitude (0.54,1/ v/3) where, as one lowers the temperature starting from
Ty, one encounters an instability region. Since we know that the Mattis states are
stable at T' = 0, we conclude that for this bias interval the temperature regions where
we have stable Mattis states are disconnected.

A similar study has been done numerically for the ¢ = 3 Mattis states and both
classes of bias parameters (4.11) and (4.12). The resulis are shown in figures 4-and
5. For a = 0, we find the value of T} in the unbiased case [15]: Tj(a = 0} = 2.18.
When & increases, T; decreases. For a = 1 we find a T} that is zero for the class B,
and non-zero for the class B,. The reason is the following: the bias B, = (2,-1,~1)
corresponds with a probability distribution for the patterns where the lowest state
has probability one. This means that there is no freedom left for the neurons. The
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1.00 T T T
075 ~
AN
LY
T osof f R .
N
y A Y
025 A
\
N
0.00 1 1 1 y
G0 0.2 0.4 0.6 0.8 1.0
a
Figure 3. The temperatures Ty and Ty as a function of the bias for the Hopfield
model. The chain curve indicates the border of the stability region.
25 T T s T r T T T
20 2.0
1.5 1.5
T r -
1.0 1.0+ -
TI
0.5 o.5) & >
0.0 1 [ T : 0.0 1 1 i
00 0z 0.4 0.8 08 10 00 0.2 0L 0.6 0.8 1.0
a : e

Figure 5. The temperatures Tp, 71, T2 and T3
as a function of the bias for the g = 3, B = B,
Potts network.

Figure 4. The temperatures Ty and T} as a
function of the bias for the y = 3, B = B; Potts
network. The chain curve indjcates the border of
the stability region.

bias B, = (1,0, —1) corresponds with a distribution where two states have a non-zero
probability. Hence the neurons can still occupy different states.

Numerical evaluation of A, (3.15) and X; (3.16) give the precise stability results
shown in the same figures. First, they confirm the preliminary resulis presented in
[14], i.e. the Mattis states are no solution of the fixed-point equation (3.12) above T}
for a bias of the form (4.11) and (4.12) independent of the value of a in contrast to the
Hopﬁeld model. Furthermore there is agam an mstablllty reg1on for B L in the interval
g€ [U 6, 1] Just as for the uopnem case. for Dz such a reglon does niot appear.

Second, contrary to the Hopfield model, where always T) < T there is a region
(Ty,T;) depending on a where both a Mattis state and the zero—solution are stable.
For @ — 1, this region contracts to zero. In fact the situation in this region can be
described more precisely as follows. Below T only one (positive) Mattis solution exists
and it is stable. At T the zero solution becomes stable and the stable Mattis state
has a finite C')Véﬁﬂp- In the inﬁefvai (TO! Tl) there éilsw, uﬁ'mums the stable zero and
Mattis state, a second unstable Mattis state. The latter has overlap zero at T, and
it increases with increasing temperature. In contrast, the overlap of the stable Mattis
state decreases. At 7, both Mattis states coalesce and disappear. The appearance of
such a region is consistent with the study of the time evolution of the overlap presented
in [15]. There it has been calculated that for a = 0, the overlap jumps from 0.75 to 0



Stability of biased Potis networks 1077

at 73 = 2.18. All this is reminiscent of a first-order phase transition at T} for the
¢ = 3 models. Therefore, deriving analytic results based on the series expansions for
small overlap, as has been done in the Hopfield case, does not make any sense in the
neighbourhood of the interesting temperature 7.

5.2. The symmelric stales

Analytic results based on series expansions for small overlap S, give information about
what happens near T} in the following way. Starting from the expanded fixed-point
equation (3.2) for the symmetric states

a? & 3(g— Da? < 2a3 <
st=0-1-5 105t 44 - na-n- DL 5 2y
p=1 =

=1

x $(57)7 + O((8S7)*) (5.5)

we see that, on the one hand, for the Hopfield model the 32 term is zero. Furthermore,
the 3 term for the positive symmetric states in that case (¢ = 2), i.e.

- (850° [ @ - 1 (@ - 2221 (5.6)

is always negative. So, this immediately suggests that for (1 - a?)B8 < 1, 1.e. T > Ty,
the only possible solution is R = 0. On the other hand, for the ¢ > 3 Potts models
the second term in (5.5) can be positive (take e.g. a = 0). Hence, a positive overlap
solution is possible for (g —1—(a®/q) 3°1_, b2) < 1, i.e. again T > T, and a negative
overlap solution is possible for T' < T},

Using these expansions for the S in (3.9)-(3.11), we find for the eigenvalues X,
to Az

1
T
)\sz—%+0(t2) t=T,-Ts0. (5.8)

A=A, & + 0 (5.7)

This teaches us that out of the symmetric states with small overlap, only the Sy
{As is not relevant in this case) is stable near T, for T < T} independent of the bias
structure. In particular the S are unstable for 7' > T,,. We remark that there might
exist S} with finite overlap at T, analogous to the Mattis state discussed above. They
cannot be treated with the expansion (5.5).

Further results for the positive symmetric states have been obtained numerically
and are summarized in figures 6-9. We concentrate on the lowest states n = 2 and
n = 3 since they show the interesting features.

First of all these results are in agreement with what we have said befare about
their T' = ( behaviour and about bias zero. But even for ¢ = 2 some new aspects,
which we could not find in the literature, arise. While for p = n and @ > 1/v/3 the
upper limit of the stability region follows the curve Ty = 1 — a?, it turns out that for
p > n this upper limit goes down due to the effect of A;. Furthermore in a region
around a = %, the symmetric state S7 becomes unstable for small temperatures.

Comparing figures 3,6 and 7 we see that, as a increases above 1/v/3, the spurious
states get more weight for ¢ = 2. This feature is also present but not so outspoken for



1078 D Bellé et al

1.00 --JT_ - T T T 1.00 ‘--L__‘_\_l T T

0 “\\\ rO \\

0.75 s . 0.75~ Mo -
T 050 N T 050k Tiln=g)

- Tln=p}

0.25 i 1, Tytn<p) - 025 \'3 i

T3ln<p)
0.00 1 L i | (.00 1 | 1
0o 02 04 0.5 08 10 0.0 0.2 04 0.6 0.8 1.0
o a

Figure 8. The temperatures Ty and Tz as a Figure 7. The temperatures Tg and T3 as a

function of the bias for the Hopfield model.

function of the bias for the Hopfield model.

25 T T T 25 T T 1 T
2.0’—--. To . ?-0"‘-—-“___ n B
~ -
~ L. =~ 4
1.5+ o - 4 . 1.5 \\\
T ~
r
Lo 2 - 1.0 r 4
L 05 B
0S5+ . i . i
0.0 N [ . 0.0 1 1 1 s L
0O 0.2 0.k 0.6 0.8 1.0 0.0 0.2 0.4 0.5 13 1.0
a a
Figure 8. The temperatures Ty and T2 as 2  Figure 9, The temperatures Ty and Ty as a

function of the bias for the ¢ = 3, B = B Potts
network. The chain curve indicates the border of
the stability region.

function of the bias for the g = 3, B = B; Potis
network. The chain curve indicates the border of
the stability region for n < p. The dotted curve
encircles the region where the symmetric state is
only stable for n = p.

the ¢ = 3 model with bias B, (compare figures 4,8 and 9). However for bias
not at all there (see fignre § "\\ Furthermore we note that for B, there is no in
from A, on the S and SF states.

Forthe¢g=3, B = 32 system one first encounters the Mattis state as one lowers
the temperature T" and this for the whole bias region. For the ¢ = 3, B = B system
the only stable states for low bias up to a = 0.35 are the Mattis states. Again we
remark that in this case the stability region for the SJ(n < p) state is disconnected
for high bias.

For both systems the stability region for higher symmetric states seems to get
smaller as a function of @ and n. So they perform better for low bias than the hiased
Hopfield model. This is even true for higher bias for the ¢ = 3, B = B, system. Here
one really finds a considerable temperature region depending on a where only the pure
patterns are stable.
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6. Concluding remarks

The main results of this paper are the following. We have studied Potts-glass models
of neural networks with a finite number of biased patterns, In particluar the existence
and stability properties of the Mattis states and symmetric states were discussed.
The positive Mattis states are interesting since they are correlated with the learned
patterns. The symmetric states correspond to mixtures of learned patterns and there-
fore they are spurious states of the network. Hence studying their (in)stability is
important.

At zero temperature we have obtained the precise conditions for stability for an
arbitrary number of Potts states ¢. In particular the positive Mattis states are always
stable. Furthermore, they give complete reirieval. The negative Mattis states are
stable for certain structures of the bias parameter. Also the stability results for the
symmetric states depend very much on the bias structure. So for these cases we refer to
the detailed explanation given in section 4. We have illustrated one of the main findings
by applying these results to two typical ¢ = 3 models. In the case that two states
have equal probability to appear (the B, system), we see that there are less stable
spurious symmetric states than for models where all states have different probability
(the B, system). For the B, system the free-energy levels cross for a certain value
of a indicating that there are symmetric states which have a lower energy than the
positive Mattis states. The latter have lower energy than the negative Mattis states.

For finite temperatures we have restricted ourselves mainly to ¢ < 3 positive
Mattis and the n = 2,3 positive symmetric states. We have studied their stability
properties in the whole temperature region as a function of the bias. First, for the
¢ = 3 models there is a region (75, T} ) (see (5.1), (5.2)) where both a Mattis state and
the zero solution are stable. From previous results [15] we know that at 7 the overlap
is discontinuous, e.g. for bias zero it jumps at T} = 2.18 from 0.75 to 0. This is in
contrast to the Hopfield model where T} < T;, and where the overlap is a continuous
function of the temperature, Second, for certain values of the bias parameters, the
temperature regions where the states of the network are stable can be disconnected,
This has been seen for the ¢ = 2 and ¢ = 3 positive Mattis and positive symmetric
states. Third, for positive n-symmetric states (¢ = 2,3) the stability region for n = p
is smaller than or equal to the stability region for n < p depending on the bias. Finally,
as ¢ increases the spurious symmetric states get more weight for ¢ = 2, a feature that
15 less outspoken for the ¢ = 3, B, system. For the ¢ = 3, B, system there scems
to be considerable temperature regions depending on a where only the pure patterns
are stable. So in that sense one could conclude that the biased ¢ = 3 models perform
better than the biased Hopfield model.
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Appendix. Behaviour of the eigenvalues \; to A; for § —

in the analysis of the stability of the states S we consider two possibilities. Firstly,
the eigenvalue A; (equations (3.6) and (3.11)) exists (n < p). To calculate the limit
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B — oo of A; we proceed as follows. We show that in this limit the average over the
distribution of learned patterns {k®}, a = 1, ..., p of the expression

z;’,:l(mkw.,,,—ab,,)?u,,(nt( (Mg, — oy )U,(n))"‘ (A1)

z:l Up(n) U (n)

p"'l
is positive or zero. Therefore we have to look carefully at the arguments of the different
exponential functions occurring in the numerator and denominator of (A1) via U »(1)
(3.8). Their value is determined in function of the Potts operator (2.2), the blas
parameters B and the distribution of the first n patterns.

In more detail, for a given configuration k = {k',...,k"}, the greatest arguments
in the exponentials of U,(n) are obtained for a well defined set of p out of {1,...,¢}.
Denoting this set by A, and its cardinality by A’(k) we get for the limit # — oo of
(A1)

EpeAk(mk““,p — ab,)? _ EpeAk(mk““.p —ab) ’ (A2)
N (k) N (k)
If A (k) > 1 for some configuration k, we rewrite (A2) as
1
W{ Z [(mkn+1’p - (lbp) - (mk,.+|'a - ab,,)]z} _>__ 0. (A3)
p.o-eAk
P

For a configuration {k, k"*'} with A(k) > 1 and such that 1 # k"*! € A, we find
that (A3) is strictly positive. Hence A, — —o0 as # — oo and therefore we have
instability.

When for all configurations k the cardinality A'(k) = 1 and hence (A2) equals
zero, we have that the limit § — oo of the product of 8 and expression (Al) is zero
since in this case (A1) decreases exponentially in 3. This implies ; = 1. Since the
averages in (3.5) and (3.7) behave in the same way, we obtain that v, =1 and § =0
in the limit 3 — oc. Hence, using (3.9) and (3.10) we see that A, = &, = 1. So, we
have stability.

Secondly, the eigenvalue X, does not exist (n = p). Looking at the expressions of
A; and A, (equations (3.9) and (3.10)) we see that we have to analyze v, (3.5) and §
(3.7). The calculation of -, is similar to the one of A; presented above. This leads to
the following results.Firstly, if for all configurations k, A{k) = 1 we have seen that
7, =l and § = 0. This means that A, = A, = 1 and hence we have stability. Secondly,
when there exists a configuration k with A'(k) > 1, we have two possibilities. If this
configuration is such that (m,, , — ab,) is not the same for all p € A, we have that
71 < 0 and this 1mmed1ately 1mphes that /\1 < 0 or A; < 0. So we have mstab:hty
However, when (mkl - B ) is the same for all p € Ak for all configurations k with

NkEkY>1, v, =1 a.nd §= 0 Therefore we have stability.

We dlscuss two typical examples, e.g. Sza and S, +1 When there are two equal bias
parameters. We use the form {4.1) for the bias parameters and we define k as in (4.7).
First let us consider n = 2{ and take the specific configuration k = (k, ...k, k+1,... . k+
1) where the first | components are equal to & and the last [ components are equal to
k + 1. Then looking at the maximum over p of (3_0_, m,. , —nB,) leads to 4, =
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{k,k+1}. According to the preceding analysis S, is unstable. Second, let us consider
n =2l +1, ¢ > 3 and take the specific configuration k& = (k,...,. k, k+1,....,k+ 1,8)
with the first { components equal to k, the following ! components equal to k +1 and
the last component s # k,k + 1. Then the maximum over p of (3_3_, my. , ~ nB,)
occurring in (A1) via U,(n) is equal to

max{lg — (2 + 1) — (2 + 1)aby, ~2 + ¢ — 1 — (2 + V)ab,, —(2 + 1) — (21 + 1)ab,}
(A4)

where the different terms are coming from p = k. k + 1, p = s and other p. If both

(= 1)g 2 (20 + Da(b — b,)
Vo#kk+1,s: lg> (2 + La(b, — b,) (A5)

then {k,k + 1} C A, so M(k) > 2 and hence we have instability. The condition
(A5) can be rewritten in the following way. If k = 1 we take s = 3 such that (A5)
immediately gives the form (4.6). If k # 1 we take s = 1 such that the first condition
in (AB) is trivially satisfied and the second one can be writien as in (4.6). So under
these conditions S3; 41 is unstable. Conversely, when (4.6) is not satisfied one can
argue that A'(k) = 1 for all configurations k (except for a finite number of values of
a) and this implies stability.
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